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The initial stage of the water flow caused by an impact on a floating body is
considered. The vertical velocity of the body is prescribed and kept constant after a
short acceleration stage. The present study demonstrates that impact on a floating and
non-flared body gives acoustic effects that are localized in time behind the front of the
compression wave generated at the moment of impact and are of major significance
for explaining the energy distribution throughout the water, but their contribution to
the flow pattern near the body decays with time. We analyse the dependence on the
body acceleration of both the water flow and the energy distribution – temporal and
spatial. Calculations are performed for a half-submerged sphere within the framework
of the acoustic approximation. It is shown that the pressure impulse and the total
impulse of the flow are independent of the history of the body motion and are readily
found from pressure-impulse theory. On the other hand, the work done to oppose the
pressure force, the internal energy of the water and its kinetic energy are essentially
dependent on details of the body motion during the acceleration stage. The main
parameter is the ratio of the time scale for the acoustic effects and the duration of the
acceleration stage. When this parameter is small the work done to accelerate the body
is minimal and is spent mostly on the kinetic energy of the flow. When the sphere is
impulsively started to a constant velocity (the parameter is infinitely large), the work
takes its maximum value: Longhorn (1952) discovered that half of this work goes to
the kinetic energy of the flow near the body and the other half is taken away with
the compression wave. However, the work required to accelerate the body decreases
rapidly as the duration of the acceleration stage increases. The optimal acceleration
of the sphere, which minimizes the acoustic energy, is determined for a given duration
of the acceleration stage. Roughly speaking, the optimal acceleration is a combination
of both sudden changes of the sphere velocity and uniform acceleration.

If only the initial velocity of the body is prescribed and it then moves freely under
the influence of the pressure, the fraction of the energy lost in acoustic waves depends
only on the ratio of the body’s mass to the mass of water displaced by the hemisphere.

1. Introduction
Unsteady flow caused by a sudden vertical motion of a floating body is considered.

The impact of rigid bodies on water and the impact of water on rigid bodies are often
described within the ideal incompressible liquid model by using the pressure impulse
concept. That is, the change in water motion due to impact is supposed to take place
over such a short time scale that the convective nonlinear terms and the viscous
terms in the equations of motion are taken as negligible compared with the direct
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acceleration term and the pressure gradient. This results in the concept of pressure
impulse, which is a time integral of pressure through the impact. This impulsive model
assumes an inelastic impact, and a consequent loss of energy from the flow. It is this
‘lost’ energy we consider here. For the sudden motion of a rigid body in an unbounded
fluid the lost energy is carried away by acoustic waves, but when there is a bounding
free surface energy may also be lost to thin jets and other small-scale motions. The
distribution of lost energy in the modelling of a violent impact with an incompressible
fluid bounded by a free surface is still an open question. It is of importance in the
interpretation of experimental results of such flows and in numerical simulations.

1.1. ‘Lost’ energy in unbounded flows

Here we consider the special problem of impact on a half-submerged sphere; the
mathematical analysis for linearized free-surface boundary conditions is then identical
to that of sudden motion of a sphere from rest in unbounded acoustic medium. This
latter problem has been studied since Kirchhoff (1876) analysed the unsteady given
motion of a rigid sphere in an acoustic medium. Love (1905, see Lamb 1932) studied
a more general problem, where the sphere motion is unknown in advance and has
to be found together with the fluid flow. The analysis given by Love and his main
results are reproduced in the textbook by Lamb (1932). Later Taylor (1942) simplified
Love’s solution and applied it to the free motion of a sphere in a compressible fluid.
The sphere is subjected to a sudden initial impulse and there is no restoring force
apart from that provided by the compressibility of the fluid. Taylor showed that the
resilience of the fluid is not capable of reversing the direction of motion of the body.
He also derived the energy distribution after impact on a sphere. We discuss these
results in § 7. The Kirchhoff problem of unsteady motion of a rigid sphere in an
unbounded acoustic fluid is analysed in Longhorn (1952), where a formula is derived
for the work required to accelerate a sphere up to a given velocity. The formula is
quite complicated and requires double integration with respect to time. Longhorn
studied two cases: impulsive start and uniform acceleration of the sphere. He found
that the work required to start a sphere impulsively is twice the amount needed if
the sphere is started gradually. The additional work goes to the energy radiated as
sound. Ffowcs Williams & Lovely (1977) considered the case of impulsive start of a
sphere also and found an equipartitioning of the energy between the kinetic energy
of the fluid surrounding the sphere and the radiated acoustic energy.

Direct nonlinear simulations of the compressible water flow generated by a circular
cylinder accelerating from rest were performed by Brentner (1990, 1993). Analysing
the temporal and spatial characteristics of the numerical solution, he distinguished
carefully the propagating acoustic energy, the convective energy associated with the
entropy change in the fluid, and the energy following the body. He studied the energy
distribution both in space and in time, as well as the global energy balance for a Mach
number of 0.4. It was discovered, in particular, that the energy in the radiated acoustic
wave is ‘nearly equally divided between kinetic and potential energy components’.

There are many other relevant papers on the motion of a sphere in a compressible
fluid; for more details the PhD thesis by Brentner (1990) and the book by Gorshkov
& Tarlakovskii (1990) are recommended.

1.2. ‘Lost’ energy in flows with a free surface

The distinguishing feature of the inclusion of a free surface is that energy may also
be lost to smaller-scale incompressible motions. It is well known that after impact
only a part of the original energy remains as kinetic energy of the visible flow, e.g.
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see Logvinovich & Yakimov (1973), and Rogers & Szymczak (1997). On the other
hand Cooker & Peregrine (1995) suggest that the lost energy of steep wave impact
on a vertical wall goes to the small-scale motion, such as narrow jets, in a manner
which probably strongly depends on the presence or absence of trapped air in the
impact region. This mode of ‘losing’ energy is given strong support by comparisons
with incompressible, irrotational computations for ‘flip-through’ described in Cooker
& Peregrine (1990, 1992). Trapped air can lead to a more elastic impact and hence
reduce the lost energy (Wood & Peregrine 2000). However, Korobkin’s (1997) overview
of the impact of a blunt body on a free surface clearly shows that both compressible
and free-surface effects need to be considered.

In the field of water impact (slamming, breaking wave impact and so on with
the impact velocities up to several metres per second) the model of an ideal and
incompressible liquid is traditionally used. It is commonly believed that the relief
of high impact pressures is mostly due to free-surface deformations, which can be
correctly described within the incompressible liquid model, but not due to compression
waves propagating away from the impacting body. This belief is based on two reasons.

(i) In the case of blunt-body impact onto a water free surface it is found that half
the work done to move the body into the water at a constant velocity goes to the
kinetic energy of the main flow and the other half is taken away with spray jets,
which are very thin at the initial stage of the impact but with velocities far exceeding
the impact velocity. This distribution of the energy from the impact of blunt bodies
was first used by Logvinovich (1969) to determine the shape of the spray jets formed
under wedge impact onto an incompressible free surface. Later, Howison, Ockenden
& Wilson (1991) derived the equations which govern the water flow inside the jets
caused by impact of a blunt wedge, and calculated the jet shape. The results obtained
confirm Logvinovich’s conclusion based on simple physical arguments. The problem
of blunt-wedge impact is self-similar, which is why the velocities of the water particles
inside the spray jets are very high but finite within the incompressible liquid model.

However, in the case of the impact of a body that is blunt and smooth, the
incompressible liquid model predicts unbounded velocities close to the jet tips. In
order to determine the flow within the spray jets in this case, Korobkin (1992, 1994a, b,
1997) developed an acoustic theory. The kinetic energies of spray jets generated by the
impact of a smooth blunt body, which initially touches the free surface of a weakly
compressible liquid at a single point, were evaluated for both plane and axisymmetric
problems (Korobkin 1994a). Acoustic impact theory shows that for large times, when
the compression waves are already far from the impact region, the kinetic energy of
the spray jets (spray sheet in the axisymmetric problem) approaches the value of the
kinetic energy of the main flow and their sum is equal to the work done to move the
body into the water at a given constant velocity. Molin, Cointe & Fontaine (1996)
obtained the same result but within the incompressible liquid model. They observed
that the kinetic energy of incompressible spray jets is finite and equal to the energy of
the flow in the main region even when the water velocity is unbounded at the jet tips.

These results demonstrate that the acoustic energy taken away from the body
in compression waves is negligibly small compared to both the kinetic energy of
incompressible flow near the body and the kinetic energy of spray jets. Therefore, the
acoustic effects give a small contribution to the total energy of the water at the end
of the acoustic stage in the problem of blunt-body impact. There are similarities to
the initial motion of a wavemaker, see King & Needham (1994)

(ii) The second reason is connected with the success of pressure-impulse theory
in applications. This theory makes it possible to determine the flow field just after
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the impact. The theory has been applied to the problems of ship hydrodynamics,
impulsive motion of a body placed in an incompressible liquid and wave impact
(Cooker & Peregrine 1992). The results obtained with the help of this theory are in
good agreement with measured data, which suggests that for low impact velocities the
water can be considered as incompressible. On the other hand, the kinetic energy of
the flow after the impact and the work done to oppose the pressure force calculated
within the pressure-impulse approach do not correspond to each other. It is expected
that a correct description of nonlinear free-surface motion may properly explain
where the ‘lost’ energy goes. It is found to be due to the rapid motion of the free
surface close to the intersection line, which is not fully taken into account within the
pressure-impulse theory (Cooker 1995).

In general, to provide a fully correct description of the water impact, analysis of
the nonlinear flow of compressible liquid with free surface at the initial stage of body
motion is required. This is too complicated for theoretical analysis at present, which
is why we study different approximate models of the impact stage using asymptotic
methods and making assumptions about both the flow pattern and the free-surface
deformation. It is expected that the solution of the problem of lost energy strongly
depends on the flow geometry and the impact conditions. In order to be specific, only
the problem of sudden downwards motion of a floating body with vertical tangent at
the waterline is considered in the present paper.

1.3. The hemispherical problem

We expect that the free surface has less influence if the jets, which are formed at the
intersection of a body surface and the water surface, are weak. Although the concept
of ‘weak’ and ‘strong’ jets is still not clear, we can say that in the case of blunt-body
impact onto a water surface the spray jets are strong, with their energies being com-
parable with the energy of the main flow, and in the case of downward impact on a
floating half-submerged sphere the jets are expected to be weak, perhaps with negli-
gible energy, since the waterline motion of the rigid body is tangential to its surface.
This and the existence of simple analytical solutions motivates the present study.

The general formulation of the problem is as follows. Initially, liquid at rest
occupies the lower half-space and a body is floating at rest on the liquid surface
with its submerged portion being hemispherical of radius R. The liquid is assumed
to be inviscid and compressible, and the body is rigid. At some instant of time,
which is taken as the initial moment, t′ = 0, the body suffers an impact and starts
to move down, and after a brief acceleration stage attains a constant velocity V . The
problem is to determine both the flow and the pressure distribution immediately after
the acceleration stage, to evaluate the kinetic energy of the flow, the internal energy
of the compressed liquid and the work done by the external force in opposing the
hydrodynamic force on the moving body. In particular we study the dependence of the
energy distribution on the details of the body motion during the acceleration stage.

There are four relevant time scales in the problem: Ta, Tc = R/c0, Td = R/V , and
Tg = V/g, where c0 is the sound velocity in the liquid at rest, and g is the acceleration
due to gravity. Surface tension is considered to be negligible. Ta is the duration of the
acceleration stage. The second time scale, Tc, is associated with the effects of the liquid
compressibility, and the third, Td, with the body displacement. The fourth, Tg , corre-
sponds to the effect of gravity acting on the free surface. In many practical problems
the impact velocity V is much less than c0 so that the Mach number M = V/c0 is small
and, correspondingly, Tc/Td � 1. We denote the ratio Tc/Ta by α and assume that
α = O(1), which means that we are dealing with violent motions of the body. Moreover,
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the flow is considered so violent that the ratio Ta/Tg is also small and gravity may be
neglected: that is the magnitude of the body acceleration is very much greater than g.

On the time scale Td both the displacement of the body and the free-surface eleva-
tion are visible: they are of the order of the body dimension. The flow has developed
by this stage: close to the body it is incompressible at the leading order as M → 0 and
decays with the distance from the body. The flow is essentially nonlinear and usually
can only be determined with the help of numerical methods. The hydrodynamic loads
on the moving body are O(ρV 2), where ρ is the liquid density, and are much less
than the loads associated with the impact. This stage of the process is referred to as
the stage of developed flow. Acoustic effects during this stage are localized near the
disturbance front, which is generated at the moment of impact and propagates away
from the body surface at the velocity of sound, c0. Acoustic flow in the vicinity of
the disturbance front gives a negligible contribution to both the velocity field and the
pressure distribution in the main bulk of the liquid but its contribution to the energy
of the liquid depends on details of the acceleration stage and can be significant. In
any case we conclude that the asymptotic behaviour of the developed flow as M → 0
is not uniform. Acoustic effects are of major significance near the disturbance front
for all time for the ideal liquid without dissipative processes that is assumed.

The flow in the vicinity of the disturbance front depends on the characteristics of the
initial stage of the impact, in particular on the body motion during the acceleration
stage. Hence both the liquid flow and the pressure distribution, during the initial
stage when t′/Td � 1, are of importance for the further evolution of the process.
Asymptotic solution of the problem as t′/Td → 0, t′/Ta → ∞ and M → 0 gives the
initial data for the incompressible flow near the moving body and the flow near the
acoustic disturbance front. The initial stage is of particular interest because that is
when the hydrodynamic loads take their maximum values.

During the initial stage of motion the body displacement is small. As a result the
equations of motion and the boundary conditions are linearized about the original
rest state and the boundary conditions are taken at the initial position of the liquid
boundary. The flow during the initial stage is irrotational and is described by a
velocity potential, which satisfies the wave equation in the liquid domain, is equal
to zero on the free surface and its normal derivative is equal to the normal velocity
of the body on the wetted part of the rigid surface. Initial conditions for the wave
equation are that the liquid is initially at rest.

For a body of an arbitrary shape, the solution of the problem can only be found
numerically. The advantages of choosing the particular shape of a half-submerged
sphere are (i) during the initial stage analytical forms for both the flow and the
pressure distribution can be found for arbitrary body motion; (ii) both the kinetic
and the internal energy of the liquid can be easily evaluated and analysed in detail;
(iii) the boundary conditions on the body surface and liquid free surface correspond
to each other near the contact line, this gives a solution which is regular at the contact
line, with the advantage that there is less likelihood of jet formation at the initial
stage. As noted above, this asymptotic problem is identical to the case of sudden
motion of a sphere in an unbounded medium.

The major focus of this paper is the distribution of energy in the flow and its
dependence on the details of the motion of the body during the acceleration stage.
Although we have chosen an example where free-surface effects are minimized, this
paper: (i) shows that acoustic effects can be of importance even for low impact
velocities; (ii) helps to interpret the results given by the pressure-impulse theory; and
(iii) demonstrates the way, in which the acoustic effects occur.
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Acoustic wave

Figure 1. A sketch of the sphere, and the position of the acoustic zone at a late time.

The general description of the problem of impact on a half-submerged sphere
and details of the pressure-impulse approach are given in § 2. The mathematical
formulation of the problem is briefly presented in § 3. The velocity field and the
pressure distribution are analysed in § 4 for an arbitrary law of the sphere motion.
The method introduced by Kirchhoff (1876) and Love (1905) is used rather than the
method of Longhorn (1952) which is more general but more complicated. The main
result of § 4 is that for large times the region of almost incompressible flow close to
the sphere and the region of the acoustic flow, which is attached to the compression
wave front, are separated by an ‘intermediate’ region, where the liquid is effectively
at rest. This result is very important because it explains the success of the pressure-
impulse theory in impact problems. The temporal and spatial distribution of the fluid
energy and its components are investigated in § 5. The analysis is similar to that
performed by Brentner (1993) for nonlinear flows of a compressible fluid. However,
within the linear acoustic approximation it is possible, even for an arbitrary motion of
the sphere, to derive analytical formulae for the energy components of different parts
of the flow region. This makes it possible to study the energy distribution in more
detail. The global energy balance in the case of impulsive start of a sphere agrees
with Longhorn (1952). The body motion that minimizes the radiated acoustic energy
during the acceleration stage of a given duration to a given final velocity is obtained
and compared with the case of uniform acceleration in § 6. Section 7 complements
these prescribed velocities of the body with a brief discussion of Taylor’s (1942) result
which gives the free motion of a body after impact.

2. Impact on a half-submerged sphere
The problem of unsteady liquid flow caused by an impact on a sphere of radius

R is considered. Initially the sphere is half-submerged and the liquid is at rest.
At the initial moment, t′ = 0, the sphere starts to move down at a given velocity
(figure 1). The liquid flow and the pressure distribution during the initial stage of the
impact are determined under the following assumptions: (i) the sphere is rigid and
undeformable; (ii) the liquid is ideal and compressible; (iii) gravity and surface tension
are negligible; (iv) the sphere’s velocity is given as Vf(t′/Ta), where 0 6 f(t′/Ta) 6 1
for t′ > 0 with f ≡ 1 for t′ > Ta, and where Ta is the acceleration time; (v) the Mach
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number M = V/c0 is much less than unity; (vi) the sphere displacement during the
acceleration stage is very much less than the sphere radius R; (vii) the duration of the
acceleration stage Ta is comparable with the time scale for the acoustic stage, which
is O(R/c0). The ratio R/(c0Ta) is denoted by α.

A shock wave is generated at the initial moment if f(0) 6= 0. During the initial stage
when the shock is not far away from the sphere, the compressibility of the liquid is
of major significance. If the body starts to move gradually, f(0) = 0, a shock wave
is not formed but the liquid compressibility may still be important if the acceleration
time interval is sufficiently short.

Provided that M � 1 a full description of the liquid flow during the initial stage
can be found by using an acoustic approximation. This approximation is valid while
deformation of the liquid domain, which can be estimated as O(Vt′), is small compared
to the overall characteristic length R.

Within the framework of the acoustic approximation the boundary conditions can
be taken on the undisturbed initial position of the liquid boundary and, moreover,
both the equations of motion and the boundary conditions can be linearized about
the initial rest state. The acoustic solution depends on the parameter α, which
indicates the magnitude of the body acceleration. Small values of α correspond to
the case when the body velocity increases gradually and the acoustic effects are
negligible at the end of the acceleration stage. Large values of α correspond to an
almost instantaneous increase of the body velocity up to its maximum value which
is unity in the dimensionless system. The limiting case, α → ∞, corresponds to an
impulsive impact on the half-sphere floating on the liquid free surface. Both the
acoustic effects, which are connected with the compressibility of the liquid, and the
effects connected with the body acceleration are expected to decay as time increases.
Under the assumptions listed above the contribution of both effects to the flow
pattern becomes negligible almost everywhere well before the body displacement is
significant. For this intermediate stage the liquid flow may be easily found with the
pressure-impulse approach.

In the pressure-impulse approach we integrate the momentum equation in time
from 0 to t′i, where Ta � t′i � R/V . Assuming t′i small and neglecting the integrals of
the convective acceleration terms, we find (Lamb 1932) that

u′(x′, t′i) ≈ −1

ρ
∇P ′,

where u′(x′, t′i) is the velocity vector of the liquid particles at the moment t′ = t′i,
P ′(x′, t′i) is the pressure impulse,

P ′(x′, t′i) =

∫ t′i

0

p′(x′, τ)dτ,

p(x′, t′) is the hydrodynamic pressure, ρ is the liquid density, the scale of the pressure
impulse is ρVR. Assuming that the acoustic effects give a negligible contribution to
the velocity field at t′ = t′i, we obtain

∇ · u′(x′, t′i) ≈ 0.

After simple manipulations and neglecting the deformation of the flow domain during
the initial stage, we arrive at the following boundary-value problem with respect to
the pressure impulse:

∇2P ′ = 0 (in the flow domain),
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P ′ = 0 (on the free surface),

∂P ′

∂n
= −ρu′b · n (on the sphere surface),

where u′b is the velocity of the body, and n is the unit normal vector to the body
surface (Cooker & Peregrine 1995). We expect the velocity field given by the pressure-
impulse theory to agree with the asymptotic value of the velocity derived from the
acoustic theory below as t→∞ near the body.

3. Formulation of the problem
The dimensional variables used above, and identified by a prime, are now replaced

with dimensionless variables using the sphere radius R as length scale, the ratio R/c0

as the time scale but scaling the liquid velocity with V , and using the ‘water hammer’
pressure ρc0V to scale pressure.

The spherical coordinates r, ϕ, θ are introduced with the origin at the sphere centre,
ϕ the longitude, −π < ϕ 6 π, and θ the polar angle, 0 6 θ 6 π, measured from the
lowest point of the sphere. The spherical and Cartesian coordinates are related by
x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ. The flow domain coincides with that
occupied by the liquid at the initial moment, r > 1, 0 6 θ 6 π/2, −π < ϕ 6 π. The
liquid flow is axisymmetric and described by the velocity potential Φ(r, θ, t), for which
the initial boundary-value problem has the form

Φtt = ∇2Φ (r > 1, 0 6 θ < π/2), (3.1)

Φ = 0 (r > 1, θ = π/2), (3.2)

Φr = f(αt) cos θ (r = 1, 0 6 θ < π/2), (3.3)

Φ = Φt = 0 (t < 0). (3.4)

Once problem (3.1)–(3.4) has been solved, the velocity field u = (ur, uθ), ur = Φr ,
uθ = r−1Φθ , and the pressure p = −Φt can be evaluated. The solution Φ(r, θ, t) is
sought among the functions defined in the region Ω = {r, θ | r > 1, 0 6 θ 6 π/2}
and describing flows with both kinetic and potential energies finite. The kinetic T
and potential Π energies of the flow are defined in the spherical coordinates by

T = 3

∫ ∞
1

r2 dr

∫ π/2

0

(u)2 sin θ dθ, (3.5)

Π = 3

∫ ∞
1

r2 dr

∫ π/2

0

p2 sin θ dθ, (3.6)

with the product maV
2 being the energy scale, where ma = 1

3
πρR3 is the added mass

of the half-submerged sphere.
The energy conservation law in the acoustic approximation can be derived by

multiplication of the wave equation (3.1) by Φt and integration of the result over the
liquid domain. After some manipulation we obtain

π

3

d

dt
[T (t) +Π(t)] =

∫∫
S

p(1, θ, t)Φr(1, θ, t)dS

= f(αt)

∫∫
S

p(1, θ, t) cos θ dS = f(αt)F(t), (3.7)
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where S is the hemisphere’s surface and F(t) is the total hydrodynamic force on the
moving sphere. After integration with respect to time and using the initial conditions
(3.4), we obtain

T (t) +Π(t) = A(t), (3.8)

where

A(t) =
3

π

∫ t

0

f(ατ)F(τ)dτ (3.9)

is the dimensionless work done to overcome the liquid’s resistance to the sphere
motion. In dimensional variables,

A′ = maV
2A(t) =

∫ t′

0

Vf(τ′/Ta)F ′(τ′)dτ′,

where F ′(t′) = ρc0VR
2F(t′c0/R) is the dimensional hydrodynamic force. The di-

mensionless energy conservation equation (3.8) is used below to analyse the energy
distribution over the liquid region and the energy evolution in time.

The disturbance front, r = t+ 1, is spherical in this problem; the liquid is disturbed
when 1 < r < t + 1 and is at rest when r > t + 1. The initial conditions (3.4) give
Φ(r, θ, t) ≡ 0 when r > t+ 1 and, therefore, the integration in equations (3.5)–(3.6) is
only from r = 1 to r = t+ 1.

The pressure impulse for the incompressible flow initiated by the sphere’s motion
is easily found to be

P (r, θ) =
1

2r2
cos θ, (3.10)

the scale of the pressure impulse being ρVR, with the components of the velocity
vector being

ûr = −Pr(r, θ), ûθ = −r−1Pθ(r, θ). (3.11)

The quantities derived from pressure-impulse theory are denoted by a hat. Therefore,
we can evaluate the kinetic energy of the flow predicted by the pressure-impulse
theory but it gives no information about the pressure magnitude and the work done
to overcome the hydrodynamic force on the moving body.

4. Velocity field and the pressure distribution
The acoustic velocity potential of the flow can be taken to have the form Φ(r, θ, t) =

φ(r, t) cos θ. Substitution of this representation into the wave equation (3.1) written in
spherical coordinates

Φtt =
1

r2

∂

∂r

(
r2 ∂Φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Φ

∂θ

)
gives the equation for φ(r, t)

r2φtt = (r2φr)r − 2φ (r > 1, t > 0). (4.1)

The boundary and initial conditions for equation (4.1) follow from (3.3), (3.4) and are

φr = f(αt) (r = 1, t > 0), (4.2)

φ = φt = 0 (t < 0). (4.3)

The solution of the boundary-value problem (4.1)–(4.3) is sought in the functional
space φ(r, ·) ∈ H1(1,∞), φt(r, ·) ∈ L2(1,∞), which yields finite values for the kinetic



166 A. A. Korobkin and D. H. Peregrine

and potential energies of the flow. This means, in particular, that φ(r, ·) is continuous
where r > 1 at any fixed time moment t.

Equation (4.1) is satisfied by the function (Kirchhoff 1876)

φ(r, t) =
∂

∂r

(
1

r
ψ(ξ)

)
, (4.4)

where ξ = t− r + 1 and ψ(ξ) is an arbitrary function. We obtain

φ(r, t) = − 1

r2
ψ − 1

r
ψξ. (4.5)

Equations (4.3) and the restriction that φ(r, t) is a continuous function of r at any
fixed instant t yield that ψ(ξ) and ψξ(ξ) are continuous for all ξ.

The boundary condition (4.2) on the sphere surface and the initial conditions (4.3)
yield the following equations for ψ(ξ) (see Kirchhoff 1876):

ψξξ + 2ψξ + 2ψ = f(αξ) (ξ > 0),

ψ(ξ) ≡ 0 (ξ < 0).

}
(4.6)

The value ξ = 0 corresponds to the front of the disturbances, r = t+ 1. Ahead of the
moving disturbance front, r > t+ 1, the liquid is at rest. Continuity of the functions
ψ(ξ) and ψξ(ξ), where −∞ < ξ < +∞, gives

ψ(0+) = ψξ(0+) = 0. (4.7)

The last two equations are initial conditions for equation (4.6), which makes it possible
to determine the unknown function ψ(ξ) by quadratures:

ψ(ξ) =

∫ ξ

0

f(αξ0)e
ξ0−ξ sin(ξ − ξ0) dξ0. (4.8)

Once the function ψ(ξ) has been evaluated, the radial ur and the angular uθ compo-
nents of the liquid velocity are given by

ur(r, θ, t) = (r−1ψξξ + 2r−2ψξ + 2r−3ψ) cos θ, (4.9)

uθ(r, θ, t) = (r−2ψξ + r−3ψ) sin θ, (4.10)

and the pressure distribution p(r, θ, t) by

p(r, θ, t) = (r−1ψξξ + r−2ψξ) cos θ. (4.11)

In particular, on the rigid surface

p(1, θ, t) = p(1, 0, t) cos θ,

p(1, 0, t) = −φt(1, t) = ψξξ(t) + ψξ(t).

}
(4.12)

Taking (4.6) into account, we obtain from (4.12)

p(1, θ, t) = f(αt) cos θ − [ψξ(t) + 2ψ(t)] cos θ, (4.13)

where the term f(αt) cos θ corresponds to the geometrical acoustic approximation.
The second term on the right of (4.13) can be neglected compared with the first one
for small times only, t� 1. There is no particular function f(αt) for which this term
is negligible for all times. This may be seen from the equation ψξ(t) + 2ψ(t) = 0 which
gives ψ(t) = C exp (−2t), where C = 0 owing to the initial conditions (4.7); then
equation (4.6) predicts f(ατ) ≡ 0 for ψ(τ) = 0, which corresponds to the rest state.
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The pressure p(1, 0, t), at the base of the sphere is not uniformly positive but changes
sign. In order to demonstrate this for an arbitrary law of the sphere motion, consider
t > 1/α, where 1/α is the duration of the acceleration stage in the dimensionless
variables. For t > 1/α the body velocity f(αt) is equal to unity and equation (4.6) gives

ψ(t) = C1e
−t sin t+ C2e

−t cos t+ 1
2 , (4.14)

where the constants C1 and C2 are determined by matching this solution with the
solution of equation (4.6) with (4.7) for 0 < t < 1/α. In the general case, these
constants are arbitrary. From (4.12)

p(1, 0, t) = e−t[(C2 − C1) sin t− (C2 + C1) cos t]

p(1, 0, 2πN + π) = −e−πp(1, 0, 2πN),

}
(4.15)

where N is integer, N > (2πα)−1. Therefore, the pressure oscillates as t > 1/α with its
magnitude decaying exponentially with time.

For the case of the impulsive start of the sphere, Ta = 0, we get f(αt) ≡ 1 for t > 0,
and the constants are C1 = C2 = −1/2. The pressure evolution at the base of the
sphere follows from (4.15):

p(1, 0, t) = e−t cos t. (4.16)

The negative pressure on the sphere surface peaks at t = 3
4
π with its magnitude being

2−1/2 exp(−3π/2). This means that the magnitude of the negative pressures, which
occur on the sphere, is less than 6.35 × 10−3 of the ‘water hammer’ pressure ρVc0.
In particular, for the impulsive impact on a sphere floating on the water surface,
ρ = 1000 kg m−3, c0 = 1500 m s−1, given a velocity V = 2 m s−1 the pressure on the
sphere peaks at the impact instant, t = 0, with its value being 3 MPa, and cannot be
lower than −19 KPa.

The hydrodynamic force on the sphere F(t) is given by

F(t) =

∫∫
S

p(1, θ, t) cos θ dS = −φt(1, t)
∫∫

S

cos2 θ dS,

where S is the wetted part of the sphere surface, the scale of the force being ρc0VR
2.

The last integral equals half the volume of a hemisphere of unit radius, which is 2
3
π.

Hence

F(t) = − 2
3πφt(1, t) = 2

3πp(1, 0, t), (4.17)

where p(1, 0, t) is given by equation (4.12). Therefore, the hydrodynamic force F(t) is
proportional to the pressure at the sphere base and they oscillate together.

The liquid particles of the free surface, θ = π/2, only move vertically, which follows
from (4.9) and (4.10). Their vertical velocity is given by

uθ(r,
1
2π, t) =

1

r2
ψξ(t− r + 1) +

1

r3
ψ(t− r + 1) (r > 1).

The elevation of the free surface is described by the equation z = ζ(r, t), r > 1, where
the function ζ(r, t) can be obtained by integration of the vertical velocity in time. We
find

ζ(r, t) =
1

r2
ψ(t− r + 1) +

1

r3

∫ t−r+1

0

ψ(ξ)dξ (1 < r < t+ 1),

ζ(r, t) ≡ 0 (r > t+ 1),
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Figure 2. The dimensionless free-surface displacement for the case of an impulsive start.

or, using equation (4.6),

ζ(r, t) =

(
1

r2
− 1

r3

)
ψ(t− r + 1)− 1

2r3
ψξ(t− r + 1) +

1

2r3

∫ t−r+1

0

f(ατ)dτ.

It is seen that

ζ(1, t) = 1
2

∫ t

0

f(ατ)dτ+ O(e−t) (t→∞).

That is, the maximum elevation of the free surface tends exponentially with time to
half the depth of sphere penetration. For the impulsive start of the sphere we find

ζ(r, t) =
t

2r3
+ 1

2
e−(t−r+1)

[
1

r3
cos(t− r + 1)− 1

r2
(sin(t− r + 1) + cos(t− r + 1))

]
.

(4.18)

The shape of the free surface is shown in figure 2. The first term in (4.18) corresponds
to the free-surface elevation predicted by the pressure-impulse theory (see (3.11)). The
second term decays exponentially with increasing time except in a narrow zone near
the disturbance front, r = t+ 1.

Asymptotics of the velocity components ur(r, θ, t) and uθ(r, θ, t) as t → ∞ are
non-uniform. Equations (4.9) and (4.10) predict that

ur(r, θ, t) =
cos θ

r3
+ O(e−t), uθ(r, θ, t) =

sin θ

2r3
+ O(e−t), (4.19)

close to the body, r = O(1), ξ = O(t), and

ur(r, θ, t) =
1

r
ψξξ + O(t−2), uθ(r, θ, t) =

1

r2
ψξ + O(t−3), (4.20)

close to the disturbance front, r = O(t), ξ = O(1), as t→∞. The leading terms in (4.19)
correspond to the velocity field predicted by the pressure-impulse theory (see (3.11)).

In order to illustrate the non-uniform distribution of the velocity and the pressure
as t → ∞, the products r ur(r, 0, t) and r p(r, 0, t) in the case of impulsive start of the
sphere, where r = tβ + 1, 0 < β < 1, are shown in figure 3 as functions of β for
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Figure 3. For impulsive motion of a sphere: the radial component of velocity, line (i), and the
pressure, line (ii), each multiplied by r, at (a) t = 5, (b) t = 10, (c) t = 20.

different time instants. It is seen that the two regions, where r = O(1) and where
ξ = O(1), are separated by an ‘intermediate’ region, where the liquid is almost at rest.
In the acoustic region, ξ = O(1), we obtain p(r, 0, t) ≈ ur(r, 0, t), which indicates that
the flow in the vicinity of the acoustic front is a hemispherical outward-propagating
acoustic wave.

Formula (4.11) for the pressure distribution shows that the pressure p(r, θ, t) tends
to zero with increasing time at every fixed point r. At a fixed instant the pressure
peaks close to the disturbance front and decays exponentially with the distance away
from it. The pressure is related entirely to the acoustic wave: the pressure of the
incompressible flow is O(ρV 2) and negligible in this linearized analysis.

5. The energy conservation law
The work A(t) done to oppose the pressure force is given by (3.9), which can be

written, using (4.17), in the form

A(t) = −2

∫ t

0

f(ατ)φt(1, τ) dτ. (5.1)
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The kinetic energy of the flow T is given by

T (t) =

∫ t+1

1

[φ2
r (r, t)r

2 + 2φ2(r, t)]dr (5.2)

and the potential energy of compressed liquid Π(t) by

Π(t) =

∫ t+1

1

φ2
t (r, t)r

2dr. (5.3)

The integration with respect to r is carried out from the sphere surface, r = 1, to
the disturbance front, r = t + 1, because φ(r, t) ≡ 0 where r > t + 1. The energy
conservation law (3.8) can now be rewritten as∫ t+1

1

(r2φ2
t + r2φ2

r + 2φ2) dr = −2

∫ t

0

f(ατ)φt(1, τ) dτ (5.4)

which can also be obtained from the boundary-value problem (4.1)–(4.3) for the
function φ(r, t).

Physical reasoning (see § 4 and Brentner 1990, 1993) shows that both the kinetic
T (t) and the potential Π(t) energies of the liquid are distributed non-uniformly over
the flow region. In order to analyse the evolution of the energy components in time
and their distributions in space, we introduce new functions

EK(r, t) =

∫ t+1

r

[φ2
r (r, t)r

2 + 2φ2(r, t)]dr, (5.5)

EΠ (r, t) =

∫ t+1

r

φ2
t (r, t)r

2dr, (5.6)

where EK(1, t) = T (t), EΠ (1, t) = Π(t). The functions EK(r∗, t) and EΠ (r∗, t) describe
the kinetic energy and the potential energy of the liquid in the region r∗ < r < t+ 1,
0 < θ < π/2, which is attached to the disturbance front, at an instant t.

Some manipulation yields

EΠ (r, t) = 1
2A(ξ)− S(ξ) +

(
1

r
− 1

)
ψ2
ξ(ξ), (5.7)

EK(r, t) = 1
2A(ξ)−

(
1− 2

r2

)
S(ξ)−

(
1− 1

r

)2

ψ2
ξ(ξ). (5.8)

where

S(t) = 1
2ψ

2
ξ(t) + ψ2(t) + 2ψ(t)ψξ(t), (5.9)

giving

T (t) = EK(1, t) = 1
2A(t) + S(t), (5.10)

Π(t) = EΠ (1, t) = 1
2A(t)− S(t). (5.11)

Equations (5.10) and (5.11) clearly show that the energy conservation law (3.8) is
satisfied.

For pressure-impulse theory the compression of the liquid under the impact is
not taken into account, therefore Π̂ = 0. The kinetic energy T̂ predicted by this
theory is equal to 1

2
, from equations (3.11) and (3.5). The scale of the energy is

the same, maV
2, as in the acoustic approach (see § 3). The quantity, which in the

pressure-impulse theory plays a role similar to the work done, A(t), to oppose the
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hydrodynamic force on the sphere, is the total impulse P ′tot: it is the integral of the
pressure impulse P ′(r′, θ) multiplied by the normal component of the velocity of the
sphere surface, V cos θ, over the wetted part of the sphere

P ′tot =

∫∫
S ′
P ′(r′, θ)V cos θ ds′

= ρV 2R3

∫∫
S

P (1, θ) cos θ ds.

In the dimensionless variables, Ptot = 1, which follows from (3.10), with the scale of
the total impulse being maV

2.
The function EΠ (r, t) depends on the variable ξ, which is the distance from the

disturbance front. Equations (4.6), (5.1) and (5.9) give

ψ2
ξ(ξ) = O(e−2ξ), S(ξ) = 1

4 + O(e−ξ), A(ξ) = A(∞) + O(e−ξ) (5.12)

as ξ →∞, t→∞. Taking (5.12) into account, we obtain that

EΠ (r, t) = 1
2A(∞)− 1

4 + O(e−ξ) (5.13)

as t→∞ and t− r →∞ . Equation (5.13) confirms that the main contribution to the
potential energy comes from the vicinity of the disturbance front.

In the same manner we can find from (5.8) that the kinetic energy of the flow
T (t)− EK(r, t) near the body, r = O(1), and for large time, t� 1, is given by

T (t)− EK(r, t) =
1

2
− 1

2r2
+ O(e−t). (5.14)

In particular,

T (t)− EK(r, t) = 1
2 + o(1)

as t → ∞, r → ∞ and r/t → 0. The last limit corresponds to the kinetic energy

T̂ given by the pressure-impulse theory. The total kinetic energy T (t) tends to
1
2
A(∞) + 1

4
as t → ∞, which follows from (5.10) and (5.12). Therefore, the kinetic

energy concentrated near the disturbance front, EK(r, t), tends to 1
2
A(∞)− 1

4
as t→∞.

It is seen that both the kinetic and potential energies carried by the acoustic wave are
equal. Therefore the total energy Eac taken away with the acoustic wave is A(∞)− 1

2

and the kinetic energy of the flow near the moving body is 1
2

for t � 1. The total
energy of the flow is equal to A(∞) which is the total work done to oppose the
hydrodynamic force. Thus in this example, with no significant free-surface motion,
acoustic effects are responsible for the ‘lost’ energy on impact.

The effects of differing acceleration regimes are illustrated with the values of EΠ (r, t)
and EK(r, t) as functions of position at chosen time instants in figures 4 to 6 for the
case α = 0.5. Figure 4 corresponds to a fully impulsive start of the body motion,
f(τ) = 1, and figure 5 to a constant acceleration (f(τ) = τ, 0 < τ < 1). Figure 6
corresponds to a mixture of impulsive and constant acceleration: f(τ) = (τ + 1)/2.
In all cases f(τ) = 1 for τ > 1. It is clearly seen that the potential energy of the
compressed liquid is localized close to the disturbance front and its value is almost
constant for t > 4. The kinetic energy is stabilized later, after t = 6. These figures
demonstrate that the energy taken away with the acoustic wave and the work required
to accelerate the body up to the given velocity depend on the details of the body
acceleration. Comparing these figures, we may conclude that a constant acceleration
is a more economical way to provide the body with a given velocity, but uniform
acceleration is not the best way, as is shown in § 6.
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Figure 4. Impulsive motion of the sphere: (a) work done A(t), kinetic energy T (t), and potential
energy of compression Π(t). (b–d) Distributions of the kinetic energy, EK , and the potential energy,
EΠ , over the flow at (b) t = 2, (c) t = 5, (d) t = 10.

Equation (5.1) for the work A(t) done to oppose the hydrodynamic force indicates
that A(t) takes its local extremum at the instants tj when the pressure p(1, 0, t) at the
sphere base is zero. The work A(t) takes its local maximum value when the pressure
p(1, 0, t) changes from positive to negative and its local minimum value when the
pressure changes from negative to positive at t = tj . This means that the work A(t) is
not a monotonic function of time. In particular, for t > 1/α it can be presented as

A(t) = As + Ab(t),

where As is the work done at the acceleration stage and Ab(t) is the work done after
the end of the acceleration stage until the instant t. Equation (5.1) gives

Ab(t) = −2

∫ t

1/α

φτ(1, τ)dτ = 2[φ(1, 1/α)− φ(1, t)]

and

As = −2φ(1, 1/α) + 2α

∫ 1/α

0

ḟ(ατ)φ(1, τ)dτ,

where ḟ(ατ) is the body acceleration. For the impulsive start of the sphere, α → ∞,
we obtain As → 0, φ(1, 1/α)→ 0 and

A(t) = −2φ(1, t).

Taking into account equations (4.5) and (4.14), we find (see Longhorn 1952)

A(t) = 1 + e−t(sin t− cos t).

The work A(t) takes its maximum value 1 + exp(−π/2) at the moment t = π/2,
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Figure 5. Uniform acceleration of the sphere: (a) dimensionless velocity of the sphere,
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Figure 6. Partly impulsive and partly uniform acceleration of sphere: (a) dimensionless velocity of
the sphere, (b) work done A(t), kinetic energy T (t), and potential energy of compression Π(t).

when p(1, 0, π/2) = 0 (see figure 7), and oscillates with time thereafter. The function
A(t) decays in the time interval (π/2, 3π/2) because the hydrodynamic loads are
negative there and the body continues to move down. During the initial time interval
(0, π/2) the liquid has been accelerated so much that it pulls the sphere down for
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Figure 7. Work done, A(t), and pressure at the base of the sphere for the case of an impulsive start.

π/2 < t < 3π/2 owing to the adhesive forces. It should be noted that the total work
A(∞) in this case is equal to unity and is about 20% less than A(π/2).

In general the total work is given by

A(∞) = 1 + 2α

∫ 1/α

0

ḟ(ατ)φ(1, τ)dτ, (5.15)

where the first term corresponds to the total impulse Ptot = 1 and the integral term
depends on a particular acceleration of the body. In the case of a gradual acceleration
of the body, α� 1, with f(0) = 0, f′(0) = 0, f(1) = 1, acoustic effects can be neglected,
the energy Eac taken away with the disturbance front is much less than the kinetic
energy of the incompressible flow T̂ and the energy conservation law (3.8) predicts
A(∞) = 1

2
. Equation (5.15) gives the same value as α → 0. Taking (4.5) into account

and introducing new variables τ = σ/α, s(σ, α) = ψ(σ/α), we can rewrite equation
(5.15) as

A(∞) = 1− 2

∫ 1

0

ḟ(σ)[s(σ, α) + αsσ(σ, α)] dσ,

where s(σ, α) satisfies the equation

α2sσσ + 2αsσ + 2s = f(σ) (0 < σ < 1),

which follows from (4.6). At leading order as α→ 0, we find

A(∞) = 1− 2

∫ 1

0

ḟ(σ)s(σ, 0)dσ + O(α), s(σ, 0) = 1
2f(σ),

which yields

A(∞) ≈ 1−
∫ 1

0

f(σ)ḟ(σ)dσ = 1− 1
2 [f2(1)− f2(0)] = 1

2 .

Therefore for smooth functions f(σ), −∞ < σ < ∞ and small α, the acoustic effects
can be neglected with the accuracy being O(α). However, even for a relatively long
acceleration stage (α� 1) this incompressible liquid model can give wrong results if
the body velocity f(αt) is not continuous in time.
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For a given α the total work A(∞) is dependent on the acceleration history of the
body for 0 6 t 6 1/α, the quantity Eac = A(∞) − 1

2
being equal to the energy taken

away with the acoustic wave. In the general case (0 < α < +∞) we expect that the
total work is limited from below by the kinetic energy T̂ of the incompressible flow.
The lower limit corresponds to a small acceleration parameter α. A related property
is considered in the next section: for given acceleration time Ta how can the acoustic
part Eac of the energy be minimized by an optimal choice of the body acceleration.

6. Optimal acceleration of floating body
The optimal acceleration that we seek gives the motion of the floating body, during

the acceleration stage of a given duration, that minimizes the acoustic energy that
is radiated. The acoustic part Eac of the total energy of the liquid is defined as
Eac = A(∞) − T̂ , where A(∞) is the total work done to oppose the hydrodynamic
force, which is given by (5.1), and T̂ is the kinetic energy of the incompressible flow,
which is given by the pressure-impulse theory and is equal to 1

2
. With the help of

equations (5.1), (4.5) and (4.6) we obtain

Eac =
1

2
− 2

[
ψ

(
1

α

)
+ ψξ

(
1

α

)]
+ 2

∫ 1/α

0

f(ατ)[f(ατ)− 2ψ(τ)− ψξ(τ)] dτ, (6.1)

and determine the body velocity f(ατ) which minimizes the value Eac.
It is convenient to introduce the following notation: u(τ) = f(ατ), x1(t) = ψ(t),

x2(t) = ψξ(t), x(t) = (x1, x2), t0 = 0, t1 = 1/α, with which the problem can be rewritten
in terms of optimal control:

<0(x, u)→ min, (6.2)

with the additional restrictions

ẋ1 = w1(t, x, u), ẋ2 = w2(t, x, u), (6.3)

<1(x, u) = 0, <2(x, u) = 0, (6.4)

where

<i(x, u) =

∫ t1

t0

hi(τ, x, u) dτ+ ωi(t0, x(t0), t1, x(t1)) (i = 0, 1, 2), (6.5)

h0(t, x, u) = 2u(u− 2x1 − x2), (6.6)

ω0(t0, x(t0), t1, x(t1)) = 1
2
− 2[x1(t1) + x2(t2)], (6.7)

h1(t, x, u) = 0, ω1 = x1(t0), (6.8)

h2(t, x, u) = 0, ω2 = x2(t0), (6.9)

w1(t, x, u) = x2, w2(t, x, u) = u− 2(x1 + x2). (6.10)

Equations (6.2) and (6.5)–(6.7) follow from (6.1), equations (6.3) and (6.10) from
(4.6), and equations (6.4), (6.8) and (6.9) are initial conditions (4.7) rewritten in the
new notation. System (6.5)–(6.7) is the classical problem of optimal control with u(t)
being the control parameter. We determine u(t), t0 6 t 6 t1 to give the minimal
value of the functional <0(x, u) under the additional restrictions (6.3) and (6.4). It is
important to notice that we do not require that 0 6 u(t) 6 1, though these inequalities
are satisfied in the examples considered below.
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In order to solve (6.2)–(6.4), we introduce new unknown functions p1(t) and p2(t)
and construct the Lagrange function

L(t, x, u, p) =

2∑
i=0

λihi(t, x, u) + p(t)[ẋ− w(t, x, u)]

and the function

l(t0, x(t0), t1, x(t1)) =

2∑
i=0

λiωi(t0, x(t0), t1, x(t1)),

where λ0, λ1, λ2 are the Lagrange multipliers. The necessary conditions for the
parameter u(t) to be optimal in a weak sense are (Pontryagin et al. 1962)

− d

dt

(
∂L

∂ẋ

)
+
∂L

∂x
= 0, (6.11)

∂L

∂ẋ
(tk) = (−1)k

∂l

∂x(tk)
(k = 0, 1), (6.12)

∂L

∂u
= 0, (6.13)

λ0 > 0. (6.14)

If λ0 = 0, then equations (6.11)–(6.13), (6.3) and (6.4) give λ1 = 0 and λ2 = 0, which
means that the function u(t) cannot be found. Therefore λ0 > 0 and it can be taken
as any positive constant. It is convenient to take λ0 = 1

2
. In this case equations (6.3),

(6.4) and (6.11)–(6.13) lead to the following boundary-value problem:

ẋ1 = x2,

ẋ2 = p2 − x1 − 3
2x2,

ṗ1 = p2 − x1 − 1
2x2,

ṗ2 = 3
2p2 − p1 − 1

2x1 − 1
4x2,

 (6.15)

x1(t0) = 0, x2(t0) = 0, p1(t1) = 1
2 , p2(t1) = 1

2 . (6.16)

Once (6.15) and (6.16) have been solved, the optimal function u(t) is given by

u(t) = p2 + x1 + 1
2
x2. (6.17)

We cannot prove here that the body velocity u(t) determined by equations (6.15)–
(6.17) gives the minimal value of the energy Eac. We may only conclude that if the
optimal velocity of the body, which minimizes the acoustic energy Eac, exists, then it
has to satisfy equations (6.15)–(6.17).

The linear boundary-value problem (6.15) and (6.16) is solved numerically. The
acoustic energy Eac for the optimal acceleration of the body is shown in figure 8 as
a function of the duration of the acceleration stage 1/α. For comparison the acoustic
energy for constant acceleration of the body, f(τ) = τ, 0 < τ < 1, is shown with a thin
line. In this case the acoustic energy Eac(1/α) is given analytically (Longhorn 1952)

Eac(1/α) = 1
2α

2{1− e−1/α[sin(1/α) + cos(1/α)]}.
The optimal sphere acceleration, and the evolution of both the pressure p(1, 0, t)
and the work A(t) with time are shown in figures 9 and 10 for durations of the
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Figure 8. Acoustic energy as a function of the duration of the acceleration, 1/α. The thick line is
for the optimal acceleration, and the thin line is for uniform acceleration.

acceleration stage of 1 and 10. It is seen that the optimal way to accelerate the sphere
up to a given velocity is, roughly speaking, a combination of impulsive motions of the
body at the beginning and end of the acceleration stage with uniform acceleration in
between.

7. Free motion initiated by an initial impulse
Up to this point forced body motion with a prescribed velocity Vf(t′/Ta) has been

considered. A similar analysis can be applied to the problem of the free motion of a
half-submerged sphere subject to an initial impulse. That is: a half-submerged sphere
of mass M at rest suddenly starts to move down with an initial velocity V . Now the
duration of the acceleration stage Ta is not defined, in contrast to the forced motion
case. We assume that Ta = O(R/c0) and put α = 1 in the following analysis. The body
velocity Vf(c0t

′/R) subsequently changes due to both the inertia of the body and
the action of the induced hydrodynamic pressure, and has to be determined together
with the liquid flow and the pressure distribution. The hydrodynamic force on the
hemispherical surface equals half that on a fully submerged sphere: thus the problem
of free motion after an impulse is the same as that considered by Taylor (1942).

The non-dimensional variables used below are the same as in the forced motion
problem (see § 3) except that the liquid velocity is now scaled with the initial body
velocity, not its final velocity. Body motion is governed by Newton’s law which in
dimensionless variables has the form

df

dt
= −3

π

ma

M
F(t) (t > 0), f(0) = 1, (7.1)

where the hydrodynamic force on the hemispherical surface F(t) is given by (4.17)
and ma is the added mass of the half-submerged sphere, 1

3
πρR3. Substituting (4.17)

into (7.1) and integrating the result, we obtain the equation

f(t)− 1 = 2
ma

M
φ(1, t). (7.2)
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Figure 9. Optimal acceleration of the sphere for the dimensionless duration of the acceleration
stage equal to unity: (a) the velocity of the sphere, (b) pressure p(1, 0, t) at the base of the sphere,
(c) the work done, A(t). The solid lines show the case of optimal acceleration and the dotted lines
the case of uniform acceleration.

Using (4.5) and (4.6) gives an equation for ψ(ξ):

ψξξ + 2aψξ + 2aψ = 1 (ξ > 0), (7.3)

ψ(0) = ψξ(0) = 0,

where a = 1 +ma/M. This is readily solved: for example in the case where a < 2, and

defining b =
√

1− (ma/M)2 the resulting motion and base pressure are

f(t) = ur(1, 0, t) =
1

a
+
a− 1

a
e−at cos bt− a− 1

b
e−at sin bt, (7.4)

p(1, 0, t) = e−at
[
cos bt− a− 1

b
sin bt

]
. (7.5)

The dimensional force on the object is 2
3
πρ0Vc0R

2p(1, 0, t), which does change sign as
in the forced motion case, and oscillates for a < 2. For the case a > 2 the trigonometric
functions are simply replaced by the corresponding hyperbolic functions, and a = 2
is the case of critical damping. The velocity of the body, (7.4), does not change
sign and exponentially approaches the limiting value 1/a as ξ → ∞ for any a > 1.
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Figure 10. As figure 9 but for the dimensionless duration of the acceleration stage equal to 10.

In dimensional terms this velocity equals VM/(M + ma), the value obtained from
the pressure-impulse theory. The case of the free floating half-submerged sphere,
M = 2ma, gives a = 3/2. Heavy spheres, 1 < a < 3/2, and light spheres, a > 3/2, are
assumed to be kept half-submerged before the impact by external forces.

The body energy before the impact, E ′B(0) = MV 2/2, and its energy after the
impact, E ′B(∞) = MV 2/(2a2), are in dimensionless variables EB(0) = 1/[2(a− 1)] and
EB(∞) = 1/[2a2(a − 1)], respectively. The total energy of the liquid after the whole
impact event is A(∞) = (a + 1)/(2a2), consistent with conservation of energy. The
manipulations leading to equations (5.10) and (5.11) show that the total kinetic energy
of the liquid T (∞) = (a+ 2)/(4a2) and the potential energy Π(∞) = 1/(4a) at the end
of the acoustic stage. It is seen that the energy conservation law EB(0) = EB(∞)+A(∞)
is satisfied.

The kinetic energy of the liquid flow after the impact predicted by the pressure-
impulse theory is T̂ = 1/(2a2) and corresponds to the incompressible flow
close to the moving body. Thus, the dimensionless acoustic energy Eac = 1/(2a).
The fraction of the acoustic energy

Eac

A(∞)
=

a

a+ 1
=

M + ma

2M + ma
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is greater than 1
2 , which implies that acoustic waves radiate more than 50% of the

total liquid energy for the case of free motion, approaching 100% as the body mass
M → 0 when the body has negligible velocity at the end of the impact. Note that this
fraction is independent of Mach number.

8. Conclusion
It is shown that for a downward impact on a floating half-submerged sphere

pressure-impulse theory gives the liquid flow and the free-surface elevation close to
the body after the acceleration stage. The energy loss predicted by this theory is the
acoustic energy carried away with the compression wave, which is generated by the
impulsive start of the sphere. If the acceleration stage is not of zero duration, the
acoustic energy decreases and can be minimized, for given acceleration duration, by
an optimal choice of the body motion. The flow close to the body tends exponentially
to that given by the pressure-impulse theory and does not depend to leading order
on details of the body acceleration. The acoustic energy is localized in a small
neighbourhood of the outward-propagating compression wave. The flow in this
neighbourhood is approximately one-dimensional with equipartition of the acoustic
kinetic and potential energies. The acoustic region of the flow is separated from the
main flow by an intermediate region, where the liquid is almost at rest. The kinetic
energy of the main flow is as given by the pressure-impulse approach. Both the
pressure on the body surface and the hydrodynamic force oscillate with time as they
decay, the magnitude of the negative pressures being quite small. The work done to
oppose the hydrodynamic force is not a monotonic function of time. The work peaks
at the moment when the pressure at the sphere’s base drops to atmospheric pressure.
If the velocity does not increase monotonically but has a maximum value there seems
to be no bound on the fraction of energy radiated in the acoustic wave.

It is reasonable to suppose that this type of behaviour also occurs for impulsive
motion of smooth bodies of other shapes which also have a vertical tangent to the
surface at the waterline. If some of the body surface overhangs at the waterline it
would cause jet formation and the energy contained in these jets would affect the
overall energy distribution. It is less clear what happens for in the case of a surface
that recedes at the waterline, like a three-quarters submerged sphere. We note that
in this case classical experiments (Worthington 1908) with spheres entering a liquid
show that the flow may or may not converge over the sphere’s surface, depending on
its roughness and velocity.
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